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Three Phase Resonant Power Supply

Designed to power a klystron tube

Power Supply Specifications
• Klystron tube requires -75kV to -

80kV, 36A to 40A for 10ms
• Maximum output 95kV, 53A (5MW)
• Fast rise time (~0.3ms)
• Low stored energy in filters
• Low voltage ripple
• Tolerant of load arcs 
• Feedback control to compensate 

for capacitor bank voltage droop



Three Phase Resonant Power Supply

• Electrolytic capacitor bank: 
– 900V, 0.3F 

• Full H-bridge per transformer
• Transformers have loosely coupled 

secondaries, parallel LC resonance
• 3 phase doubling configuration

– Secondaries connected in Y
– Y point connected to center of 

doubler capacitor
• RL snubber at the end of 

transmission line
• Crowbar sparkgap
• dsPIC microcontroller control 

system



IGBT H-bridges and Gate Drivers

• Full H-bridge per transformer
• IGBTs: 3.3kV, 1.2kA (CM1200HB-66H)
• CT concepts plug and play gate drivers

– Isolated from dc power supply
– Fiber optic control

• Low inductance bus plates
– 1/16” copper plates with 1/16” 

polycarbonate insulation
– Low ESL stiffening capacitors



Resonant Transformer Design

• Nano-crystalline iron core
• Loosely coupled secondary for high 

leakage inductance
• Parallel resonator capacitance 0.05uF
• Secondary leakage inductance 1.36mH
• 136 turn secondary
• 10 turn primary
• 120:1 boost ratio at resonance
• Oil immersed secondary for insulation 

and corona prevention



Resonant Transformer Model

• Mathematical model of leakage inductance to avoid 
trial and error transformer design
– Use Wheeler’s formula for a short solenoid
– Assume magnetic flux is excluded from core 

when primary is shorted
– Modify for leakage inductance by subtracting 

core area from coil cross section area
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Resonant Transformer Model

• Model of transformer boost ratio 
frequency response

• Transfer function from simplified 
secondary referred model

• Accurate prediction of resonant 
frequency and measured transfer 
function
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Resonant Transformer Primary Waveforms

• Soft switching at resonance (ZCS)

• 18.5khz
– Switching near zero current

• 20khz
– Switching moves away from zero 

current
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Crowbar Sparkgap

• In the event of an internal arc, damage to 
the klystron’s cathode may occur

• 140J stored in doubler capacitors at 75kV
• Spark gap crowbars voltage across 

klystron tube in the event of arc.

• Methods of triggering
– Overvoltage: Gap spacing
– di/dt: series inductor connected to top 

trigger electrode
– External trigger: connected to klystron 

RF detector

• Current sense output: shutdown signal to 
power supply if sparkgap fires.



RL Snubber

• Klystron arc generates HV pulse and 
ringing on transmission line

• Damage to doubling capacitors
• RL snubber added

– R=50ohm, L=400uH
– Series connection with Klystron
– Mounted inside insulating PVC pipe

• Elimination of ringing, reduction of 
reflected pulse amplitude
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Harmonic Mitigation and Filtering

• Three phase rectifier
– 6th harmonic ripple

• Unbalanced secondary voltages
– Variations in resonant frequency
– Primarily 1st, 2nd, and 4th harmonics
– Trimming of PWM duty cycle
– Trimming resonant frequency by adding 

external inductance

• Lowpass Pi filter 
• LC harmonic filter tuned to 6th harmonic



Control System

• Microchip dsPIC30F2020 microcontroller
– Designed for SMPS use
– 30 MIPS operation
– High speed ADC (10bit, 2msps)
– Time base synchronized PWM allows 

constant phase separation of primary 
waveforms

– 120 control loop cycles per ms
• Fiber optic control of IGBT modules
• Ground loop isolated inputs

• Feedback/feedforward methods
– Capacitor bank voltage: Operational
– Output voltage: Development in 

progress
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Control System

• Controller tunes switching frequency toward 
resonance to compensates for capacitor 
bank droop to stabilize output voltage

• Linearized approximation of  boost ratio vs
frequency 

• Boost(Fkhz)=-12*Fkhz+343
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Experimental Data

Fit Boost= -12*F(kHz)+343
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Questions?
Contact: Andrew Seltzman, seltzman@wisc.edu

Scan me for email address.


