Design of an 80kV, 40A Resonant SMPS for Pulsed Power Applications

Paul Nonn, Andrew Seltzman, Jay Anderson

University of Wisconsin – Madison Department of Physics

IEEE IPMHVC June 4, 2012

Three Phase Resonant Power Supply

Designed to power a klystron tube

Power Supply Specifications

- Klystron tube requires -75kV to -80kV, 36A to 40A for 10ms
- Maximum output 95kV, 53A (5MW)
- Fast rise time (~0.3ms)
- Low stored energy in filters
- Low voltage ripple
- Tolerant of load arcs
- Feedback control to compensate for capacitor bank voltage droop

Three Phase Resonant Power Supply

- Electrolytic capacitor bank:
 - 900V, 0.3F
- Full H-bridge per transformer
- Transformers have loosely coupled secondaries, parallel LC resonance
- 3 phase doubling configuration
 - Secondaries connected in Y
 - Y point connected to center of doubler capacitor
- RL snubber at the end of transmission line
- Crowbar sparkgap
- dsPIC microcontroller control system

IGBT H-bridges and Gate Drivers

- Full H-bridge per transformer
- IGBTs: 3.3kV, 1.2kA (CM1200HB-66H)
- CT concepts plug and play gate drivers
 - Isolated from dc power supply
 - Fiber optic control
- Low inductance bus plates
 - 1/16" copper plates with 1/16" polycarbonate insulation
 - Low ESL stiffening capacitors

Resonant Transformer Design

- Nano-crystalline iron core
- Loosely coupled secondary for high leakage inductance
- Parallel resonator capacitance 0.05uF
- Secondary leakage inductance 1.36mH
- 136 turn secondary
- 10 turn primary
- 120:1 boost ratio at resonance
- Oil immersed secondary for insulation and corona prevention

Resonant Transformer Model

- Mathematical model of leakage inductance to avoid trial and error transformer design
 - Use Wheeler's formula for a short solenoid
 - Assume magnetic flux is excluded from core when primary is shorted
 - Modify for leakage inductance by subtracting core area from coil cross section area

Resonant Transformer Model

- Model of transformer boost ratio frequency response
- Transfer function from simplified secondary referred model
- Accurate prediction of resonant frequency and measured transfer function

140

Boost Ratio

Resonant Transformer Primary Waveforms

- Soft switching at resonance (ZCS)
- 18.5khz
 - Switching near zero current

- 20khz
 - Switching moves away from zero current

Crowbar Sparkgap

- In the event of an internal arc, damage to the klystron's cathode may occur
- 140J stored in doubler capacitors at 75kV
- Spark gap crowbars voltage across klystron tube in the event of arc.
- Methods of triggering
 - Overvoltage: Gap spacing
 - di/dt: series inductor connected to top trigger electrode
 - External trigger: connected to klystron RF detector
- Current sense output: shutdown signal to power supply if sparkgap fires.

RL Snubber

- Klystron arc generates HV pulse and ringing on transmission line
- Damage to doubling capacitors
- RL snubber added
 - R=50ohm, L=400uH
 - Series connection with Klystron
 - Mounted inside insulating PVC pipe
- Elimination of ringing, reduction of reflected pulse amplitude

Harmonic Mitigation and Filtering

- Three phase rectifier
 - 6th harmonic ripple
- Unbalanced secondary voltages
 - Variations in resonant frequency
 - Primarily 1st, 2nd, and 4th harmonics
 - Trimming of PWM duty cycle
 - Trimming resonant frequency by adding external inductance
- Lowpass Pi filter
- LC harmonic filter tuned to 6th harmonic

Control System

- Microchip dsPIC30F2020 microcontroller
 - Designed for SMPS use
 - 30 MIPS operation
 - High speed ADC (10bit, 2msps)
 - Time base synchronized PWM allows constant phase separation of primary waveforms
 - 120 control loop cycles per ms
- Fiber optic control of IGBT modules
- Ground loop isolated inputs
- Feedback/feedforward methods
 - Capacitor bank voltage: Operational
 - Output voltage: Development in progress

Control System

- Controller tunes switching frequency toward resonance to compensates for capacitor bank droop to stabilize output voltage
- Linearized approximation of boost ratio vs frequency
- Boost(Fkhz)=-12*Fkhz+343

Questions?

Contact: Andrew Seltzman, <u>seltzman@wisc.edu</u> Scan me for email address.

