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This paper is made to supplement NRE6102
Introduction


Modern tokamak design requires an in depth understanding of the theory and application behind the interaction of RF waves and the ionized particles in a plasma. Plasma wave interaction in a tokamak is normally divided into three main categories; RF heating, current drive, and plasma diagnostics. 

In RF heating, wave energy is transferred to particle motion exploiting the wave-particle resonances in a plasma, selectively heating electrons or ions. By providing external heating the Hugill disruption limit (Stacey fig. 18.1) may be extended allowing for higher densities and fusion rates. 
Rf current drive transfers organized momentum to the plasma in order to induce toroidal currents that generate the poloidal containment field. In modern tokamaks, the requirement of sustaining continuous currents without continuously increasing the current through the central solenoid, can be accomplished by using RF waves to induce currents in the plasma. This can be accomplished by landau damping or by selectively heating electrons or ions traveling an a specific direction, reducing their cross section and inducing a net current.
The temperature and density of a given plasma can be determined by probing the plasma with RF waves, and subsequently determining resonances, cutoffs and phase shift, or by passively observing the emitted RF radiation due to oscillations in the plasma. 

While it is possible to solve the standard problems of plasma physics with the boxed equations, a thorough understanding of the subject requires the understanding of the basic physics behind the interactions between electromagnetic waves and particles. Such an understanding can be gained by working the derivations to gain insight into the fundamental nature of plasma waves and understanding the limits of resonance and cutoff for each type of wave. Such derivations and analysis are covered in the following paper.
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I. Waves in an unmagnetized plasma. 

· Electromagnetic Waves

From Maxwell’s Equations we have the following curl identities:
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Differentiating on both sides of the magnetic field curl equation:
 MACROBUTTON MTPlaceRef \* MERGEFORMAT (1.3)



[image: image3.wmf][

]

2

0

22

1

BjE

B

tttct

m

¶¶¶¶

Ñ´=Ñ´=+

¶¶¶¶


Substituting in 
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 from the electric field curl equation:
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Using the double curl identity 
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Defining current generated by a species in a plasma as:
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The plasma force balance equation is then used to solve for 
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Using the cold plasma approximation there are no net particle flows, since electrons scatter off ions and travel around them with out imparting significant momentum, we consider there to be no pressure gradients. Since the plasma is unmagnetized, there is no Lorenz force.
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The force balance equation reduces to
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Now 
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 can be found from the force balance
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Plugging 
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Assuming waves of the form
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The Helmholtz wave equation can be used to specify
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and solving for
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The general form of the plasma dispersion relation is found to be
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Simplifying the dispersion relation for several cases
For a longitudinal wave, 
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A longitudinal plasma wave oscillates at the fundamental electron plasma frequency and propagates by the electrostatic interactions of the plasma electrons. The longitudinal wave is carried by electron density fluctuations and is at higher frequency then the ion sound wave. In this limit, the ions appear virtually stationary to the electrons, and no pressure gradients are induced. The longitudinal plasma wave has no resonances or cutoffs.
[image: image26.png]



For a transverse wave, 
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A transverse electromagnetic wave propagates through a plasma like a light wave through free space, however the presence of the plasma imposed a correction on wavelength based on plasma density.
[image: image31.png]



The transverse plasma wave has no resonances but has a cutoff when the wave frequency is below the plasma frequency. As the wave propagates into higher density region, the wavelength increases until propagation vector 
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 is forced to zero, thereby reflecting the wave back out of the plasma. If the cutoff region is sufficiently thin, it is possible that part of the wave will evanescently couple through the cutoff region and resume in an area of lower density, however, part of the wave will still be reflected.
[image: image33.png]



· Ion sound waves
To find the effect of propagating pressure waves in a plasma, we take waves to be of the form
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Expanding the position variable about its equilibrium position
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The pressure balance equation now is approximated as
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Taking
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Using the cold plasma approximation there are no net particle flows, however in this case the ions carry the momentum of the wave and oscillate generating pressure gradients.
Using poisons equation to equate E to the potential 
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Using the adiabatic gas relation

 MACROBUTTON MTPlaceRef \* MERGEFORMAT (1.29)



[image: image40.wmf]00

pn

pn

g

=


 MACROBUTTON MTPlaceRef \* MERGEFORMAT (1.30)



[image: image41.wmf]00

11

00

iiiJ

pp

pnkTT

nn

g

=Þ==


The pressure balance equation is now
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Solving the pressure equation, we need to know potential as a function of density and temperature.

For electrons assume a Boltzman distribution
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Using he Taylor expansion for exp()
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From Poisson’s equation
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Substituting in electron density
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and solving for 
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Solving the ion continuity equation
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and linearizing by removing higher order terms 
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Now substituting in the expressions for second order terms and canceling out like terms
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Ion sound wave dispersion relation
 MACROBUTTON MTPlaceRef \* MERGEFORMAT (1.46)
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 where Vs is the ion sound speed
The ion sound wave is a longitudinal plasma wave that travels at the ion sound speed Vs by means of electrostatic interactions between plasma ions. The ion sound wave exists at much lower frequency then the longitudinal plasma  wave. In this limit electrons move around ions much faster then the wave speed, thereby reestablishing electrostatic equilibrium. The ion sound wave travels by pressure waves, with ions contributing the majority of available mass and momentum. The ion sound wave has no resonances however at sufficiently high frequencies ion sound waves will not propagate due to the ions high mass.

II. Waves in a uniformly magnetized plasma
· Electromagnetic waves

With a uniform magnetic field directed along the Z axis the pressure balance equation is
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Defining
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Using Einstein implicit summation, a general form of the wave equations may be found. Given that:
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In a general form, using indices STU:
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The individual components may now be written as
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Solving for velocity components to find currents
Solving for Vy
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And substituting it into the Vx relation
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Now solving for jx
Current Density
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Likewise
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Knowing j, the dispersion relation can be solved from Maxwell’s equations
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Likewise for the other components
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For waves with 
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O-mode resonance
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 O-mode resonance for linearly polarized waves
The O mode resonance occurs for a linearly polarized wave traveling perpendicular to the magnetic field with electric field parallel to the magnetic field. In this mode, the plasma ions or electrons are excited along the field line at their fundamental oscillation frequency. This excitation is exactly the same as in an unmagnetized plasma since the particle motion is parallel to the magnetic field, eliminating any Lorenz force interaction.
[image: image94.png]



For waves propagating along B, 
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X-mode resonance
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  X-mode resonance for CP wave
The X mode resonance occurs for a circularly polarized wave traveling along the magnetic field. At resonance the rotating electric field accelerates the electrons or ions at their gyro frequency as they are guided in a circular path around the magnetic field lines..
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For 
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 this corresponds to the x-mode cyclotron resonance for a circularly polarized wave. The CP wave will penetrate the plasma for  k>0 given by
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For waves with 
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 the dispersion relations are
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Transverse wave with 
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· Hybrid Waves

Hybrid waves are combinations of longitudinal and transverse waves with 
[image: image111.wmf]kB

^

. They are a hybrid of two frequencies, one relating to the ion cyclotron frequency and one relating to the fundamental plasma frequency.
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Which has resonances at
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The upper hybrid resonances are given by
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and the lower hybrid resonances
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If 
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 the lower hybrid resonance is approximately
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III. Dispersion matrix for a magnetized plasma
The current densities in a plasma can be represented in an alternate notation by using Ohm’s law to represent the current densities in matrix notation.
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In a magnetized plasma with 
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Splitting up the x,y,z components of the electric field we can represent the current in the form of the conductivity tensor. Note that the X and Y components of the current densities(orthogonal to the magnetic field) represent the cyclotron motion, while the Z component(parallel to the magnetic field) represents linear oscillations at the fundamental plasma frequency.
 MACROBUTTON MTPlaceRef \* MERGEFORMAT (3.6)



[image: image124.wmf]22

2222

22

2222

2

0

0

00

x

y

z

nene

i

mm

E

nene

i

jE

mm

E

ine

m

ss

ss

ss

ss

s

s

s

w

ww

w

ww

w

éù

W

-

êú

-W-W

êú

éù

êú

W

êú

=

êú

êú

-W-W

êú

êú

ëû

êú

êú

êú

ëû

14444444244444443


This can be modified into the dielectric tensor using the definition of susceptibility
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and that of the dielectric constant
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the dielectric tensor can be written as
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Defining the fundamental plasma frequency as
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Defining
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The dielectric tensor (Stacey Sect. 12.4.1.1) can now be simplified to
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where S and D stand for sum and difference of the R and L hand circular polarizations
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IV. Antenna Arrays
· Use of arrays

In a tokamak Plasma is heated by launching an RF wave into the plasma at the given polarization, direction, and frequency. The RF wave is transferred to the tokamak from a generator using coaxial cable or waveguides, however to launch the wave, an antenna must be used to effectively couple the cable or waveguide to free space or the plasma within the reactor.
For high frequencies, a feed horn is used at the end of the waveguide to launch and direct the wave. While the horn antenna is capable of easily directing an RF wave at an angle, lower frequency antennas such as a dipole or inductive strap(loop) radiate omni directionally, preventing efficient current drive. 

A strap antenna, is positioned near the surface of the first wall of the tokamak, near the plasma vacuum interface, however this type of antenna would normally radiate omni directionally. At any given point in space, the phases of the RF wave emitted from each element in the antenna array will interfere, either constructively or destructively, governing the intensity of the RF power radiated in a given direction. By properly adjusting the spacing and drive phases of the individual elements, the array can launch an RF wave at any required angle.
· Array factor calculations

For a set of elements with spacing |R-Rn|

[image: image139.png]
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For a given element:
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Summing over all elements
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where 
[image: image144.wmf](
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 is the radiation pattern of a single element.
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where
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[image: image147.wmf]z

= phase shift between elements

d= element spacing


[image: image148.wmf]q

= polar angle about array length
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Using the identity
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Array factor magnitude
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 for broadside array, let 
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[image: image158.png]270




Azimuthal array factor pattern

The radiation pattern generated is the product of the array factor and the individual element pattern. 
[image: image159.png]



NTSX strap antenna array; 6 elements (Courtesy of Dept of Phys, Princeton University)
In this case a set of 3 strap antennas on the wall of a tokamak can direct the RF into a narrower beam pointing directly inward, or by adjusting the phases of the array elements, can direct the beam at an angle with respect to the wall.
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Single element pattern vs array pattern


V. Electron Cyclotron Wave Heating
Electron cyclotron waves heat a plasma at the fundamental electron cyclotron frequency, 
[image: image162.wmf]ce
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 (about 100GHz to 200GHz) or a harmonic thereof, by heating plasma electrons which then in turn heat plasma ions due to collision heating. The ECRF wave is either an elliptically polarized wave at the cyclotron frequency for X-mode heating or a linearly polarized wave at the fundamental plasma frequency for O-mode heating. Due to the field intensity in the tokamak, the ECRF resonance surface is a thin plane in the radial direction extending vertically.
ECRF Generation

The requirement of high power high frequency RF sources has led to the use and improvement of existing RF sources to met the increasing power output demand.
High power ECRF is produced using a gyrotron RF source(Hoekzema Sect III.A). In a gyrotron, electrons spiral helically about the magnetic field produced in the oscillator cavity, and in the process azimuthally group into bunches,  producing a high power RF field as they travel down the oscillator cavity.
[image: image163.png]Collector





ECRF Transport

Due to the losses present at high frequencies in dielectric material, either small coaxial cables(Stacey Sect. 12.4.2.1), or waveguides(Hoekzema Sect III.B) are used to inject the ECRF into the tokamak.

ECRF Launching
ECRF is accomplished through a grilled aperture structure. By adjusting the phase of the wave at each sub section of the grill, the array factor can be adjusted to launch the RF at any given angle into the plasma. Due to the high frequency, the ECRF wave is rarely reflected off of the vacuum-plasma interface(Hoekzema Sect 1).

ECRF Accessibility

Since the fundamental frequency EC wave reaches cutoff before it reaches resonance when propagation into an increasing magnetic field, the wave will be reflected unless it is injected from the high field side.

To allow low field side injection the second harmonic of the ECRF frequency is used, allowing the ECRF wave to reach the fundamental resonance surface before it reaches the second harmonic cutoff surface. The tradeoff is that gyrotrons for the second harmonic are not readily available and the absorption is weaker then that of the fundamental frequency. 
This weaker absorption rate causes the wave heating to be distributed over a larger volume of the plasma and is not as controllable. For most modern tokamaks, first harmonic ECRF is used to heat the plasma in precise locations and is injected from the low field side.
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